यदि $( x +1)^{ n }$ के $x$ की घातों में द्विपद प्रसार में कोई तीन क्रमागत गुणांक $2: 15: 70$ के अनुपात में है, तो इन तीन गुणांकों का औसत हैं
$964$
$625$
$227$
$232$
$k$ के धनात्मक पूर्णांक मानों की संख्या, ताकि $\left(2 x ^3+\frac{3}{ x ^{ k }}\right)^{12}, x \neq 0$ द्विपद प्रसार में अचर पद $2^8 . \ell$ हो जहाँ $\ell$ एक विषम पूर्णांक है, होगी -
${\left( {{x^2} - \frac{1}{{3x}}} \right)^9}$ के प्रसार में $x$ रहित पद होगा
$\left(a^{2}+\sqrt{a^{2}-1}\right)^{4}+\left(a^{2}-\sqrt{a^{2}-1}\right)^{4}$ का मान ज्ञात कीजिए।
$\left(1-\frac{1}{x}+3 x^{5}\right)\left(2 x^{2}-\frac{1}{x}\right)^{8}$ के द्विपद प्रसार में $x$ से स्वतंत्र पद है
व्यंजक ${[x + {x^{{{\log }_{10}}(x)}}]^5}$ में $x$ का मान है, यदि इसके विस्तार में तीसरा पद $106$ हो